Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
2.
Anal Chim Acta ; 1301: 342450, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553121

RESUMO

Molecular imprinting polymers (MIPs) are synthetic receptors as biomimetic materials for various applications ranging from sensing to separation and catalysis. However, currently existing MIPs are stuck to some of the issues including the longer preparation steps and poor performance. In this report, a facile and one-pot strategy by integrating the in-situ growth of magnetic nanoparticles and reversed phase microemulsion oriented molecularly imprinting strategy to develop magnetic molecular imprinted nanocomposites was proposed. Through self-assembling of the template, it brought up highly ordered and uniform arrangement of the imprinting structure, which offered faster adsorption kinetic as adsorption equilibrium was achived within 15 min, higher adsorption capacity (Qmax = 48.78 ± 1.54 µmol/g) and high affinity (Kd = 127.63 ± 9.66 µM) toward paradigm molecule-adenosine monophosphate (AMP) compared to the conventional bulk imprinting. The developed MIPs offered better affinity and superior specificity which allowed the specific enrichment toward targeted phosphorylated peptides from complex samples containing 100-fold more abundant interfering peptides. Interestingly, different types of MIPs can be developed which could targetly enrich the specific phosphorylated peptides for mass spectrometry analysis by simply switching the templates, and this strategy also successfully achieved imprinting of macromolecular peptides. Collectively, the approach showed broad applicability to target specific enrichment from metabolites to phosphorylated peptides and providing an alternative choice for selective recognition and analysis from complex biological systems.


Assuntos
Impressão Molecular , Polímeros , Polímeros/química , Peptídeos , Substâncias Macromoleculares , Adsorção , Impressão Molecular/métodos
3.
Biomed Pharmacother ; 173: 116338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417290

RESUMO

Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70ß, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/uso terapêutico
4.
Child Dev ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353466

RESUMO

Improved survival of preterm low birthweight (LBW) infants due to advances in neonatal care has brought issues such as postnatal development trajectories to the foreground. This study pools evidence from three cluster-randomized experiments evaluating community-based psychosocial stimulation programs conducted from 2014 to 2017 that included 3571 rural Chinese children aged 6-24 months (51.1% male, 96.2% Han Chinese). The risk of severe cognitive delay was found to be 26.5 percentage points higher for preterm LBW children than for their peers at age 2.5, with a prevalence rate of 48.3%. Results show that psychosocial stimulation interventions can improve child cognitive development at scale, with beneficial impacts on child cognition disproportionately larger for preterm LBW children, helping them to catch up developmentally.

5.
Talanta ; 272: 125760, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364563

RESUMO

Staphylococcus aureus (S. aureus) poses a serious threat to global public health, necessitating the establishment of rapid and simple tools for its accurate identification. Herein, we developed a terahertz (THz) metamaterial biosensor based on aptamer-functionalized Fe3O4@Au nanocomposites for quantitative S. aureus assays in different clinical samples. Fe3O4@Au@Cys@Apt has the dual advantages of magnetism and a high refractive index in the THz range and was used to rapidly separate and enrich target bacteria in a complex environmental solution. Furthermore, conjugation to the nanocomposites significantly increased the resonance frequency shift of the THz metamaterial after target loading. Our results showed that the shifts in the metamaterial resonance frequency were linearly related to S. aureus concentrations ranging from 1.0 × 103 to 1.0 × 107 CFU/mL, with a detection limit of 4.78 × 102 CFU/mL. The biosensor was further applied to S. aureus detection in spiked human urine and blood with satisfactory recoveries (82.4-109.6%). Our approach also demonstrated strong concordance with traditional plate counting (R2 = 0.99306) while significantly lowering the analysis time from 24 h to <1 h. In conclusion, the proposed biosensor can not only perform culture-free and extraction-free detection of target bacteria but can also be easily extended to the determination of other pathogenic bacteria, rendering it suitable for various bacteria-related disease diagnoses.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanocompostos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Técnicas Biossensoriais/métodos , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Bactérias , Ouro
6.
Stem Cell Res Ther ; 15(1): 34, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321524

RESUMO

Inflammation is a common and important pathological process occurring in any part of the body and relating to a variety of diseases. Effective tissue repair is critical for the survival of impaired organisms. Considering the side effects of the currently used anti-inflammatory medications, new therapeutic agents are urgently needed for the improvement of regenerative capacities of inflammatory-impaired tissues. Mesenchymal stromal stem/progenitor cells (MSCs) are characterized by the capabilities of self-renewal and multipotent differentiation and exhibit immunomodulatory capacity. Due to the ability to modulate inflammatory phenotypes and immune responses, MSCs have been considered as a potential alternative therapy for autoimmune and inflammatory diseases. Natural compounds (NCs) are complex small multiple-target molecules mostly derived from plants and microorganisms, exhibiting therapeutic effects in many disorders, such as osteoporosis, diabetes, cancer, and inflammatory/autoimmune diseases. Recently, increasing studies focused on the prominent effects of NCs on MSCs, including the regulation of cell survival and inflammatory response, as well as osteogenic/adipogenic differentiation capacities, which indicate the roles of NCs on MSC-based cytotherapy in several inflammatory diseases. Their therapeutic effects and fewer side effects in numerous physiological processes, compared to chemosynthetic drugs, made them to be a new therapeutic avenue combined with MSCs for impaired tissue regeneration. Here we summarize the current understanding of the influence of NCs on MSCs and related downstream signaling pathways, specifically in pathological inflammatory conditions. In addition, the emerging concepts through the combination of NCs and MSCs to expand the therapeutic perspectives are highlighted. A promising MSC source from oral/dental tissues is also discussed, with a remarkable potential for MSC-based therapy in future clinical applications.


Assuntos
Doenças Autoimunes , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Diferenciação Celular , Adipogenia , Imunomodulação
7.
Nano Lett ; 24(9): 2812-2820, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396345

RESUMO

Electroreduction of waste nitrate to valuable ammonia offers a green solution for environmental restoration and energy storage. However, the electrochemical self-reconstruction of catalysts remains a huge challenge in terms of maintaining their stability, achieving the desired active sites, and managing metal leaching. Herein, we present an electrical pulse-driven Co surface reconstruction-coupled Coδ+ shuttle strategy for the precise in situ regulation of the Co(II)/Co(III) redox cycle on the Co-based working electrode and guiding the dissolution and redeposition of Co-based particles on the counter electrode. As result, the ammonia synthesis performance and stability are significantly promoted while cathodic hydrogen evolution and anodic ammonia oxidation in a membrane-free configuration are effectively blocked. A high rate of ammonia production of 1.4 ± 0.03 mmol cm-2 h-1 is achieved at -0.8 V in a pulsed system, and the corresponding nitrate-to-ammonia Faraday efficiency is 91.7 ± 1.0%. This work holds promise for the regulation of catalyst reactivity and selectivity by engineering in situ controllable structural and chemical transformations.

8.
Plant Sci ; 341: 112022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311250

RESUMO

Ginseng is a perennial herb of the genus Panax in the family Araliaceae as one of the most important traditional medicine. Genomic studies of ginseng assist in the systematic discovery of genes related to bioactive ginsenosides biosynthesis and resistance to stress, which are of great significance in the conservation of genetic resources and variety improvement. The transcriptome reflects the difference and consistency of gene expression, and transcriptomics studies of ginseng assist in screening ginseng differentially expressed genes to further explore the powerful gene source of ginseng. Protein is the ultimate bearer of ginseng life activities, and proteomic studies of ginseng assist in exploring the biosynthesis and regulation of secondary metabolites like ginsenosides and the molecular mechanism of ginseng adversity adaptation at the overall level. In this review, we summarize the current status of ginseng research in genomics, transcriptomics and proteomics, respectively. We also discuss and look forward to the development of ginseng genome allele mapping, ginseng spatiotemporal, single-cell transcriptome, as well as ginseng post-translational modification proteome. We hope that this review will contribute to the in-depth study of ginseng and provide a reference for future analysis of ginseng from a systems biology perspective.


Assuntos
Ginsenosídeos , Panax , Panax/genética , Proteômica , Perfilação da Expressão Gênica , Genoma de Planta , Raízes de Plantas/metabolismo
9.
Opt Lett ; 49(3): 694-697, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300092

RESUMO

Inter-channel nonlinearity compensation plays a crucial role in wavelength division multiplexing (WDM) systems for improving transmission capacity and distance. In this work, we propose a novel, to the best of our knowledge, inter-channel nonlinearity compensation method called generalized Rayleigh quotient optimization (GRQO) method with two different working modes. In an 8 × 64 GBaud 16-ary quadrature amplitude modulation (16-QAM) experimental system over 1600 km standard single-mode fiber (SSMF), the proposed method shows a 0.40 dB Q2 factor improvement over nonlinear polarization cross talk canceller (NPCC) with a moderately low computational complexity of about 2000 real multiplications per bit (RMb).

10.
Int J Biol Sci ; 20(3): 831-847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250153

RESUMO

Mitochondria are energy-producing organelles that are mobile and harbor dynamic network structures. Although mitochondria and endoplasmic reticulum (ER) play distinct cellular roles, they are physically connected to maintain functional homeostasis. Abnormal changes in this interaction have been linked to pathological states, including cardiac hypertrophy. However, the exact regulatory molecules and mechanisms are yet to be elucidated. Here, we report that ATPase family AAA-domain containing protein 3A (ATAD3A) is an essential regulator of ER-mitochondria interplay within the mitochondria-associated membrane (MAM). ATAD3A prevents isoproterenol (ISO)-induced mitochondrial calcium accumulation, improving mitochondrial dysfunction and ER stress, which preserves cardiac function and attenuates cardiac hypertrophy. We also find that ATAD3A is a new substrate of NAD+-dependent deacetylase Sirtuin 3 (SIRT3). Notably, the heart mitochondria of SIRT3 knockout mice exhibited excessive formation of MAMs. Mechanistically, ATAD3A specifically undergoes acetylation, which reduces self-oligomerization and promotes cardiac hypertrophy. ATAD3A oligomerization is disrupted by acetylation at K134 site, and ATAD3A monomer closely interacts with the IP3R1-GRP75-VDAC1 complex, which leads to mitochondrial calcium overload and dysfunction. In summary, ATAD3A localizes to the MAMs, where it protects the homeostasis of ER-mitochondria contacts, quenching mitochondrial calcium overload and keeping mitochondrial bioenergetics unresponsive to ER stress. The SIRT3-ATAD3A axis represents a potential therapeutic target for cardiac hypertrophy.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas Mitocondriais , Sirtuína 3 , Animais , Camundongos , Cálcio , Cardiomegalia/genética , Homeostase , Mitocôndrias , Sirtuína 3/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas Mitocondriais/genética
11.
Chem Commun (Camb) ; 60(11): 1460-1463, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223975

RESUMO

Grain boundaries of metal halide perovskites contain massive defects that are detrimental to photovoltaics applications. This work demonstrates that inorganic NH4NO3 can selectively passivate the grain boundaries of perovskite films and improve their moisture resistance simultaneously, resulting in enhanced performance and stability of the methylammonium-free perovskite solar cells.

12.
J Ethnopharmacol ; 321: 117528, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043754

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Although the Traditional Chinese Medicine (TCM) prescription of Danggui Shaoyao San (DSS) presents substantial clinical efficacy and promising clinical prospects, the safety of DSS and its extracts have been inadequately investigated. The larva-adult duality of the zebrafish model offers a more efficient approach for evaluating the safety of herbal preparations in the fields of toxicology and pharmacology. AIM OF THE STUDY: To investigate the acute toxicity of the extract derived from Danggui Shaoyao San, a traditional Chinese medicine preparation, on both Danio rerio embryos and adult organisms. MATERIALS AND METHODS: The components of DSS were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The hatching rate of Danio rerio juveniles with different concentrations of DSS was calculated and the morphological changes of juveniles after administration were observed through a microscope. The behavioral trajectory of the adult fish was recorded by the observation tower of the automated Danio rerio analysis system, and DSS's effects on the behavior was analyzed. The pathological changes of Danio rerio gills, livers, kidneys, intestines and spermaries were examined using HE staining. RESULTS: Compared with the control group, 25, 50 and 100 mg/L of DSS did not elicit any significant impacts on the hatching rate and morphology. Both 200 mg/L and the propylene glycol 2% reduced the hatching rate and caused the morphological teratogenic changes of the juvenile fish. The dosage of DSS below 100 mg/L had no discernible effect on the behavior of the adult fish, whereas the application of propylene glycol 2% was found to stimulate the adult fish, resulting in a notable increase in high-speed movement distance. 100 mg/L DSS group was not observed to cause any noticeable damage to the gills, livers, intestines and spermaries of Danio rerio, only mild nephrotoxicity was detected. The propylene glycol 2% group was found to result in pathological changes such as hyperplasia of epithelial cells on secondary lamellae, liver cell outline loss or atypia, tubal disorganization, goblet cell hypertrophy and irregularly arranged spermatozoa. CONCLUSION: A viable approach for conducting toxicological studies on TCM preparations was developed and tested in this research. The findings showed that Danggui Shaoyao San has minimal acute toxicity to embryos and adult organisms at concentrations up to 100 mg/L. These results indicate that Danggui Shaoyao San is a safe TCM preparation.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Masculino , Animais , Peixe-Zebra , Cromatografia Líquida , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Propilenoglicóis
13.
Toxicon ; 237: 107561, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092195

RESUMO

Cadmium (Cd) exposure causes oxidative damage to mitochondria, which would adversely affect rat testicular tissue. Quercetin (Que) is a natural antioxidant with anti-inflammatory, antioxidant and anti-apoptotic effects. However, the mechanism by which Que inhibits Cd-induced apoptosis of testicular cells remains unclear. The purpose of this study was to investigate the role of mitochondrial apoptosis pathway (Cyt-c/Caspase-9/Caspase-3/Bax/Bcl-2 pathway) in inhibiting Cd-induced apoptosis of testicular cells by Que. We used SD rats to simulate Cd chloride exposure by treating all sides of the rats with CdCl2 and/or Que. The levels of GSH and MDA in rat testis were detected using reagent kits. The effects of CdCl2 and/or Que on tissue damage, apoptosis, and gene and protein expression of the Cyt-c/Caspase-9/Caspase-3/Bax/Bcl-2 pathway in rat testis were examined by HE, TUNEL, RNA extraction and reverse-transcriptase polymerase chain reaction (RT-PCR), and Western blot (Wb). The results show that Cd significantly increased the contents of GSH and MDA in rat testis (P < 0.01); conversely, Que significantly reduced the contents of GSH and MDA (P < 0.01). Cd inflicted damage to testicular tissue, and Que addition significantly reduced the damage. Cd increased the number of apoptosis of testicle cells, and Que inhibited testicle-cell apoptosis. In addition, the results of reverse transcription PCR and Wb assays confirmed that, as expected, Cd increased the expression levels of Cyt-c, Caspase-9, Caspase-3, and Bax mRNAs as well as proteins. And at the same time decreased the expression of the anti-apoptotic factor Bcl-2 in the cells. Surprisingly, these effects were reversed when Que was added. Therefore, Que can play an antioxidant and anti-apoptotic role in reducing the testicular tissue damage caused by Cd exposure. This provides a conceptual basis for the later development and utilization of Que as well as the prevention and treatment of tissue damage caused by Cd exposure.


Assuntos
Antioxidantes , Quercetina , Masculino , Ratos , Animais , Quercetina/farmacologia , Quercetina/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Cádmio/toxicidade , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Ratos Sprague-Dawley , Estresse Oxidativo , Testículo , Apoptose , Citocromos c/metabolismo
14.
J Chromatogr A ; 1714: 464543, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38065027

RESUMO

Exosomes, also known as small extracellular vesicles, are widely present in a variety of body fluids (e.g., blood, urine, and saliva). Exosomes are becoming an alternative promising source of diagnostic markers for disease rich in cargo of metabolites, proteins, and nucleic acids. However, due to the low abundance and structure similarity with protein complex, the efficient isolation of exosomes is one of the most important issues for biomedical applications. With a higher order of f-orbitals in rare earth element, it will have strong adsorption toward the phosphate group on the surface of the phospholipid bilayer of exosomes. In this study, we systematically investigated the ability of various rare earths interacting with phosphate-containing molecules and plasma exosomes. One of the best binding europium was selected and used to synthesize core-shell magnetic nanomaterials (Fe3O4@SiO2@Eu2O3) for the enrichment of exosomes from human plasma. The developed nanomaterials exhibited higher enrichment capacity, less time consumption and more convenient handling compared to commonly used ultracentrifugation method. The nanomaterials were applied to separate exosomes from the plasma of patients with hepatocellular carcinoma and healthy controls for metabolomics study with high-resolution mass spectrometry, where 70 differentially expressed metabolites were identified, involving amino acid and lipid metabolic pathway. We anticipated the rare earth-based materials to be an alternative approach on exosome isolation for disease diagnosis or postoperative clinical monitoring.


Assuntos
Exossomos , Nanocompostos , Humanos , Exossomos/química , Exossomos/metabolismo , Dióxido de Silício , Fosfatos/análise , Fenômenos Magnéticos
15.
Acta Pharm Sin B ; 13(12): 4875-4892, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045054

RESUMO

The clinical utilization of doxorubicin (Dox) in various malignancies is restrained by its major adverse effect: irreversible cardiomyopathy. Extensive studies have been done to explore the prevention of Dox cardiomyopathy. Currently, ferroptosis has been shown to participate in the incidence and development of Dox cardiomyopathy. Sorting Nexin 3 (SNX3), the retromer-associated cargo binding protein with important physiological functions, was identified as a potent therapeutic target for cardiac hypertrophy in our previous study. However, few study has shown whether SNX3 plays a critical role in Dox-induced cardiomyopathy. In this study, a decreased level of SNX3 in Dox-induced cardiomyopathy was observed. Cardiac-specific Snx3 knockout (Snx3-cKO) significantly alleviated cardiomyopathy by downregulating Dox-induced ferroptosis significantly. SNX3 was further demonstrated to exacerbate Dox-induced cardiomyopathy via induction of ferroptosis in vivo and in vitro, and cardiac-specific Snx3 transgenic (Snx3-cTg) mice were more susceptible to Dox-induced ferroptosis and cardiomyopathy. Mechanistically, SNX3 facilitated the recycling of transferrin 1 receptor (TFRC) via direct interaction, disrupting iron homeostasis, increasing the accumulation of iron, triggering ferroptosis, and eventually exacerbating Dox-induced cardiomyopathy. Overall, these findings established a direct SNX3-TFRC-ferroptosis positive regulatory axis in Dox-induced cardiomyopathy and suggested that targeting SNX3 provided a new effective therapeutic strategy for Dox-induced cardiomyopathy through TFRC-dependent ferroptosis.

16.
Front Cell Infect Microbiol ; 13: 1323674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076462

RESUMO

Background: Alzheimer's disease (AD), characterized by a severe decline in cognitive function, significantly impacts patients' quality of life. Traditional Chinese Medicine (TCM) presents notable advantages in AD treatment, closely linked to its regulation of intestinal flora. Nevertheless, a comprehensive exploration of the precise role of intestinal flora in AD remains lacking. Methods: We induced an AD model through bilateral intracerebroventricular injection of streptozotocin in rats. We divided 36 rats randomly into 6 groups: sham-operated, model, Danggui Shaoyao San (DSS), and 3 DSS decomposed recipes groups. Cognitive abilities were assessed using water maze and open field experiments. Nissl staining examined hippocampal neuron integrity. Western blot analysis determined synaptoprotein expression. Additionally, 16S rDNA high-throughput sequencing analyzed intestinal flora composition. Results: DSS and its decomposed recipe groups demonstrated improved learning and memory in rats (P<0.01). The open field test indicated increased central zone residence time and locomotor activity distance in these groups (P<0.05). Furthermore, the DSS and decomposed recipe groups exhibited reduced hippocampal neuronal damage and increased expression levels of synapsin I (P<0.05) and PSD95 (P<0.01) proteins. Alpha and Beta diversity analyses showed that the intestinal flora species richness and diversity in the DSS and decomposed recipe groups were similar to those in the sham-operated group, signifying a significant restorative effect (P<0.05). Conclusion: The combination of DSS and its decomposed recipes can reduce the abundance of harmful gut microbiota, leading to improvements in cognitive and learning abilities.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Humanos , Ratos , Animais , Qualidade de Vida , Medicina Tradicional Chinesa
17.
Am J Transl Res ; 15(10): 6159-6169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969189

RESUMO

OBJECTIVE: To investigate the effect of contralateral controlled functional electrical stimulation (CCFES) combined with mirror therapy on motor function and negative mood in stroke patients. METHODS: Medical records of 94 stroke patients in Baoji Central Hospital admitted from April 2020 to October 2022 were retrospectively analyzed. Among them, 45 patients receiving routine rehabilitation training combined with mirror therapy were included in a control group, and 49 patients receiving CCFES combined with mirror therapy were in an observation group. Observation indexes included changes in Fugl-Meyer Assessment (FMA), Berg Balance Scale (BBS), Hamilton Anxiety Rating Scale (HAMA), Hamilton Depression Rating Scale (HAMD), Stroke Specific Quality of Life Scale (SS-QoL) score, and Barthel Index score before and after treatment. Patients with HAMA score >14 and HAMD score ≥20 after the treatment were included in a negative mood group, and logistics regression was used to analyze the risk factors for negative mood. RESULTS: The observation group had a significantly higher overall response rate after treatment compared to the control group. In addition, the observation group exhibited significantly higher scores in the FMA and BBS after treatment, indicating better physical function (P<0.001). Furthermore, the observation group showed lower HAMA and HAMD scores after treatment, suggesting reduced anxiety and depression levels (P<0.001). The quality-of-life scores measured by the SS-QoL and the Barthel Index score were both increased in the observation group after treatment, indicating better overall well-being and functional independence (P<0.001). Logistic regression analysis revealed that age, post-treatment SS-QoL scores, and post-treatment Barthel Index were identified as influencing factors for the onset of adverse emotions in patients (P<0.05). CONCLUSION: CCFES plus mirror therapy can effectively ameliorate limb function and lessen anxiety and depression in stroke patients, exerting beneficial effects on rehabilitation.

18.
Environ Sci Pollut Res Int ; 30(60): 125790-125805, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38001299

RESUMO

Cadmium (Cd) is a highly toxic environmental pollutant. The liver is an important metabolic organ in the body and is susceptible to Cd toxicity attacks. Quercetin (Que) is a flavonoid compound with pharmacological activities of scavenging free radicals and antioxidant activity. Previous studies have shown that Que can alleviate Cd caused hepatocyte apoptosis in rats, but the specific mechanism remains unclear. To explore the specific mechanism, we established a model of Cd toxicity and Que rescue in BRL-3A cells and used 4-phenylbutyrate (4-PBA), an endoplasmic reticulum stress (ERS) inhibitor, as positive control. Set up a control group, Cd treatment group, Cd and Que co treatment group, Que treatment group, Cd and 4-PBA co treatment group, and 4-PBA treatment group. Cell Counting Kit-8 (CCK-8) method was employed to measure cell viability. Fluorescence staining was applied to observe cell apoptosis. Flow cytometry was performed to detect reactive oxygen species levels. Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot method was adopted to detect the mRNA and protein expression levels of ERS and apoptosis-related genes. The results showed that compared with the control group, the Cd treated group showed a significant decrease in cell viability (P < 0.01), an increase in intracellular ROS levels, and apoptosis. The mRNA and protein expression levels of ERS and apoptosis related factors such as GRP78, IRE1α, XBP1, ATF6, Caspase-12, Caspase-3 and Bax in the cells were significantly increased (P < 0.01), while the mRNA and protein expression levels of Bcl-2 were significantly reduced (P < 0.01). Compared with the Cd treatment group, the Cd and Que co treatment group and the Cd and 4-PBA co treatment group showed a significant increase in cell viability (P < 0.01), a decrease in intracellular ROS levels, a decrease in cell apoptosis, and a significant decrease in the expression levels of ERS and apoptosis related factors mRNA and protein (P < 0.01), as well as a significant increase in Bcl-2 mRNA and protein expression (P < 0.01). We confirmed that Que could alleviate the apoptosis caused by Cd in BRL-3A cells, and the effects of Que were similar to those of ERS inhibitor.


Assuntos
Cádmio , Quercetina , Ratos , Animais , Quercetina/farmacologia , Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Apoptose , RNA Mensageiro/metabolismo , Estresse do Retículo Endoplasmático
19.
Aging (Albany NY) ; 15(22): 13077-13099, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37988184

RESUMO

Recent studies have highlighted the significant involvement of tryptophan metabolism in the pathogenesis of Alzheimer's disease (AD). However, a comprehensive investigation of the precise role of tryptophan metabolism in the context of AD is still lacking. This study employed a bioinformatics approach to identify and validate potential tryptophan metabolism-related genes (TrpMgs) associated with AD. The discovery of TrpMgs was facilitated through the intersection of the Weighted Gene Co-expression Network Analysis (WGCNA) test and 17 known tryptophan metabolism pathways. Subsequently, the putative biological functions and pathways of the TrpMgs were elucidated using Gene Set Variation Analysis (GSVA). Furthermore, the Least Absolute Shrinkage and Selection Operator (LASSO) method was applied to identify hub genes and evaluate the diagnostic efficiency of the 5 TrpMgs in distinguishing AD. The relationship between hub TrpMgs and clinical characteristics was also investigated. Finally, in vivo verification of the five TrpMgs was performed using APP/PS1 mice. We identified 5 TrpMgs associated with AD, including propionyl-CoA carboxylase subunit beta (PCCB), TEA Domain Transcription Factor 1 (TEAD1), Phenylalanyl-TRNA Synthetase Subunit Beta (FARSB), Neurofascin (NFASC), and Ezrin (EZR). Among these genes, PCCB, FARSB, NFASC, and TEAD1 showed correlations with age. In the hippocampus of APP/PS1 mice, we observed down-regulation of FARSB, PCCB, and NFASC mRNA expressions. Furthermore, PCCB and NFASC protein expressions were also down-regulated in the cerebral cortex and hippocampus of APP/PS1 mice. Our study paves the way for future research aimed at unraveling the intricate mechanisms underlying tryptophan metabolism dysregulation in AD and its therapeutic implications.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Triptofano , Camundongos Transgênicos , Imunoterapia
20.
Contemp Clin Trials ; 135: 107381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935307

RESUMO

BACKGROUND: The greatest age-related weight gain occurs in the early/mid-20s. Overall dietary quality among adolescents and emerging adults (age 18-25) is poor, with ultra-processed foods (UPF) representing more than two-thirds of adolescents' total energy intake (i.e., 68%). UPF consumption may impact cognitive and neurobiological factors that influence dietary decision-making and energy intake (EI). To date, no research has addressed this in this population. METHODS: Participants aged 18-25 will undergo two 14-day controlled feeding periods (81% UPF, 0% UPF) using a randomly assigned crossover design, with a 4-week washout between conditions. Brain response to a UPF-rich milkshake, as well as behavioral measures of executive function, will be evaluated before and after each diet. Following each diet, measurements include ad libitum buffet meal EI, food selection, eating rate, and eating in the absence of hunger (EAH). Prior to initiating recruitment, controlled diet menus, buffet, and EAH snacks were developed and evaluated for palatability. Sensory and texture attributes of buffet and EAH snack foods were also evaluated. RESULTS: Overall diet palatability was rated "like very much" (8)/"like moderately"(7) (UPF: 7.6 ± 1.0; Non-UPF: 6.8 ± 1.5). Subjective hardness rating (range = 1-9 [1 = soft, 9 = hard] was similar between UPF and Non-UPF buffet and snack items (UPF:4.22 ± 2.19, Non-UPF: 4.70 ± 2.03), as was the objective measure of hardness (UPF: 2874.33 ± 2497.06 g, Non-UPF: 2243.32 ± 1700.51 g). CONCLUSIONS: Findings could contribute to an emerging neurobiological understanding of the effects of UPF consumption including energy overconsumption and weight gain among individuals at a critical developmental stage.


Assuntos
Fast Foods , Alimento Processado , Adolescente , Adulto , Humanos , Adulto Jovem , Dieta , Ingestão de Energia , Aumento de Peso , Estudos Cross-Over
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...